

YEAR 12 MATHEMATICS METHODS SEMESTER ONE 2018 TEST 1 EXPONENTIALS AND LOGARITHMS AND DIFFERENTIAL CALCULUS

Tuesday 27 th February			Name:		
Time: 45 minutes	Part A:	Part B:	Total:		%

- Answer all questions neatly in the spaces provided. Show all working.
- You are permitted to use the Formula Sheet for both sections, and an A4 page of notes, plus up to 3 permitted calculators in the Calculator Allowed section.

Topic	Confidence		
Exponentials and logarithms			
Logarithm laws and solving equations	Low Moderate High		
Logarithmic graphs and scales	Low Moderate High		
Exponential growth and decay	Low Moderate High		
Differential calculus			
Exponential functions	Cow Moderate High		
Natural logarithmic functions	Low Moderate High		
Differentiation rules	Low Moderate High		

_			
_			

Self reflection (eg. comparison to target, content gaps, study and work habits etc)

1. [10 marks]

Solve the following equations, giving exact answers in simplest form.

a)
$$2^{x-1} = 7$$

$$\log_4 x = \frac{3}{2}$$

[2]

c)
$$\log_3(3x+1) = 2 + \log_3(x)$$

d)
$$e^{2x} - e^x = 6$$

2. [5 marks]

Given that $\log_2 3 = m$ and $\log_2 5 = p$,

a) $\ \operatorname{express}\ \log_2 30 \operatorname{in}\ \operatorname{terms}\ \operatorname{of}\ m$ and p

[2]

b) evaluate 2^{p-2m}

[3]

3. [5 marks]

a) Sketch the graph of $y = \log_2(x+2) - 1$ labelling asymptotes, intercepts and a key point.

[3]

b) Explain why graphs of equations of the form $y = \log_a(x + a) - 1$ a > 0 always pass through the origin.

4. [9 marks]

a) Differentiate the following equations. Answers should be in the same form as the question but do not need to be simplified or expressed in factored form.

i)
$$y = \frac{x^3}{e^x}$$

ii)
$$y = \sqrt{x^2 - 1} (5x - x^2)$$

b) Given
$$y = \frac{u^3}{3} - u$$
 and $u = \ln(2x - 3)$ determine $\frac{dy}{dx}$ in terms of x .

[3]

5. [9 marks]

The size of a population, W, is measured every year and has an instantaneous rate of change given by the equation $\frac{dW}{dt} = \frac{W}{20}$, where t is the number of years after recording commenced.

The initial population is 2500.

- a) State whether the population is increasing or decreasing, giving a mathematical reason for your answer.
- $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} \beg$
- [2]
- [1]
- d) Find the rate of change of W when t = 4, (correct to 2 decimal places).

c) Find the size of W when t = 4. (Round to the nearest integer).

e) Determine the year in which the instantaneous rate of change first reaches 500 units per annum.

[2]

6. [5 marks]

a) Plot the function $y = 4^x$ on the axes below. Note the logarithmic scale on the y-axis.

[2]

b) The 'db' or Decibel scale for sound level measuring loudness of sound is given by:

Sound level =
$$10\log(I \times 10^{12})$$
 db

Where I is the intensity of the sound in Watts per $\mathrm{m^2}$

Show that doubling the intensity of a sound increases the sound level by only a few db.